
CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011
Instructor: Chandra Chekuri Scribe: CC

Local search is a powerful and widely used heuristic method (with various extensions). In this
lecture we introduce this technique in the context of approximation algorithms. The basic outline
of local search is as follows. For an instance I of a given problem let S(I) denote the set of feasible
solutions for I. For a solution S we use the term (local) neighborhood of S to be the set of all
solution S′ such that S′ can be obtained from S via some local moves. We let N(S) denote the
neighborhood of S.

LocalSearch:
Find a “good” initial solution S0 ∈ S(I)
S ← S0

repeat
If (∃S′ ∈ N(S) such that val(S′) is strictly better than val(S))

S ← S′

Else
S is a local optimum
return S

EndIf
Until (True)

For minimization problems S′ is strictly better than S if val(S′) < val(S) whereas for maxi-
mization problems it is the case if val(S′) > val(S).

The running time of the generic local search algorithm depends on several factors. First, we
need an algorithm that given a solution S either declares that S is a local optimum or finds a
solution S′ ∈ N(S) such that val(S′) is strictly better thatn val(S). A standard and easy approach
for this is to ensure that the local moves are defined in such a way that |N(S)| is polynomial in the
input size |I| and N(S) can be enumerated efficiently; thus one can check each S′ ∈ N(S) to see if
any of them is an improvement over S. However, in some more advanced settings, N(S) may be
exponential in the input size but one may be able to find a solution in S′ ∈ N(S) that improves
on S in polynomial time. Second, the running time of the algorithm depends also on the number
of iterations it takes to go from S0 to a local optimum. In the worst case the number of iterations
could be |OPT−val(S0)| which need not be strongly polynomial in the input size. We will see that
one can often use a standard scaling trick to overcome this issue; basically we stop the algorithm
unless the improvement obtained over the current S is a significant fraction of val(S). Finally, the
quality of the initial solution S0 also factors into the running time.

1 Local Search for Max Cut

We illustrate local search for the well-known Max Cut problem. In Max Cut we are given an
undirected graph G = (V,E) and the goal is to partition V into (S, V \ S) so as to maximize the
number of edges crossing S, that is, |δG(S)|. In the weighted version each edge e has a non-negative
weight w(e) the goal is to maximize the weight of the edges crossing S, that is, w(δG(S)) where
w(A) =

∑
e∈Aw(e).

We consider a simple local search algorithm for Max Cut that starts with an arbitrary set
S ⊆ V and in each iteration either adds a vertex to S or removes a vertex from S as long as it
improves the cut capacity.

LocalSearch for Max Cut:
S ← ∅
repeat

If (∃v ∈ V \ S such that w(δ(S + v)) > w(δ(S)))
S ← S + v

Else If (∃v ∈ S such that w(δ(S − v)) > w(δ(S)))
S ← S − v

Else
S is a local optimum
return S

EndIf
Until (True)

We will first focus on the quality of solution output by the local search algorithm.

Lemma 1 Let S be a local optimum outbut the local search algorithm. Then for each vertex v,
w(δ(S) ∩ δ(v)) ≥ w(δ(v))/2.

Proof: Let αv = w(δ(S)∩ δ(v)) be the weight of edges among those incident to v (δ(v)) that cross
the cut S. Let βv = w(δ(v))− αv.

We claim that αv ≥ betav for each v. If v ∈ V \ S and αv < βv then moving v to S will
strictly increase w(δ(S)) and S cannot be a local optimum. Similarly if v ∈ S and αv < βv
w(δ(S − v)) > w(δ(S)) and S is not a local optimum. 2

Corollary 2 If S is a local optimum then w(δ(S)) ≥ w(E)/2 ≥ OPT/2.

Proof: Since each edge is incident to exactly two vertices we have w(δ(S)) = 1
2

∑
v∈V w(δ(S)∩δ(v)).

Apply the above lemma,

w(δ(S)) =
1
2

∑
v∈V

w(δ(S) ∩ δ(v))

≥ 1
2

∑
v∈V

w(δ(v))/2

≥ 1
2
w(E)

≥ 1
2
OPT,

since OPT ≤ w(E). 2

The running time of the local search algorithm depends on the number of local improvement
iterations; checking whether there is a local move that results in an improvement can be done by
trying all possible vertices. If the graph is unweighted then the algorithm terminates in at most |E|
iterations. However, in the weighted case, it is known that the algorithm can take an exponential

time in |V | when the weights are large. Many local search algorithms can be modified slightly
to terminate with an approximate local optimum such that (i) the running time of the modified
algorithm is strongly polynomial in the input size and (ii) the quality of the solution is very similar
to that given by the original local search. We illustrate these ideas for Max Cut. Consider the
following algorithm where ε > 0 is a parameter that can be chosen. Let n be the number of nodes
in G.

Modified LocalSearch for Max Cut(ε):

S ← {v∗} where v∗ = arg maxv∈V w(δ(v))
repeat

If (∃v ∈ V \ S such that w(δ(S + v)) > (1 + ε
n)w(δ(S)))

S ← S + v
Else If (∃v ∈ S such that w(δ(S − v)) > (1 + ε

n)w(δ(S)))
S ← S − v

Else
return S

EndIf
Until (True)

The above algorithm terminates unless the improvement is a relative factor of (1 + ε
n) over the

current solution’s value. Thus the final output S is an approximate local optimum.

Lemma 3 Let S be the output of the modified local search algorithm for Max Cut. Then w(δ(S)) ≥
1

2(1+ε/4)w(E).

Proof: As before let αv = w(δ(S) ∩ δ(v)) and βv = w(δ(v)) − αv. Since S is an approximately
local optimum we claim that for each v

βv − αv ≤
ε

n
w(δ(S)).

Otherwise a local move using v would improve S by more than (1 + ε/n) factor. (The formal proof
is left as an exercise to the reader).

We have,

w(δ(S)) =
1
2

∑
v∈V

αv

=
1
2

∑
v∈V

((αv + βv)− (βv − αv))/2

≥ 1
4

∑
v∈V

(w(δ(v))− ε

n
w(S))

≥ 1
2
w(E)− 1

4

∑
v∈V

ε

n
w(S)

≥ 1
2
w(E)− 1

4
ε · w(S).

Therefore w(S)(1 + ε/4) ≥ w(E)/2 and the lemma follows. 2

Now we argue about the number of iterations of the algorithm.

Lemma 4 The modified local search algorithm terminates in O(1
εn log n) iterations of the improve-

ment step.

Proof: We observe that w(S0) = w(δ(v∗)) ≥ 1
2nw(E) (why?). Each local improvement iteration

improves w(δ(S)) by a multiplicative factor of (1 + ε/n). Therefore if k is the number of iterations
that the algorithm runs for then (1 + ε/n)kw(S0) ≤ w(δ(S) where S is the final output. However,
w(δ(S)) ≤ w(E). Hence

(1 + ε/n)kw(E)/2n ≤ w(E)

which implies that k = O(1
εn log n). 2

A tight example for local optimum: Does the local search algorithm do better than 1/2?
Here we show that a local optimum is no better than a 1/2-approximation. Consider a complete
bipartite graph K2n,2n with 2n vertices in each part. If L and R are the parts a set S where
|S ∩ L| = n = |S ∩ R| is a local optimum with |δ(S)| = |E|/2. The optimum solution for this
instance is |E|.

Max Directed Cut: A problem related to Max Cut is Max Directed Cut in which we are
given a directed edge-weighted graph G = (V,E) and the goal is to find a set S ⊆ V that maximizes
w(δ+G(S)); that is, the weight of the directed edges leaving S. One can apply a similar local search as
the one for Max Cut. However, the following example shows that the output S can be arbitrarily
bad. Let G = (V,E) be a directed in-star with center v and arcs connecting each of v1, . . . , vn to v.
Then S = {v} is a local optimum with δ+(S) = ∅ while OPT = n. However, a minor tweak to the
algorithm gives a 1/3-approximation! Instead of returning the local optimum S return the better
of S and V \ S. This step is needed because the directed cuts are not symmetric.

2 Local Search for Submodular Function Maximization

In this section we consider the utility of local search for maximizing non-negative submodular
functions. Let f : 2V → R+ be a non-negative submodular set function on a ground set V . Recall
that f is submodular if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ V . Equivalently f
is submodular if f(A + v) − f(A) ≥ f(B + v) − f(B) for all A ⊂ B and v 6∈ B. f is monotone
if f(A) ≤ f(B) for all A ⊆ B. f is symmetric if f(A) = f(V \ A) for all A ⊆ V . Submodular
functions arise in a number of settings in combinatorial optimization. Two important examples are
the following.

Example: Coverage in set systems. Let S1, S2, . . . , Sn be subsets of a set U . Let V = {1, 2, . . . , n}
and define f : 2V → R+ where f(A) = | ∪i∈A Si|. f is a monotone submodular function. One
can also associate weights to elements of U via a function w : U → R+; the function f defined as
f(A) = w(∪i∈ASi) is also monotone submodular.

Example: Cut functions in graphs. Let G = (V,E) be an undirected graph with non-negative
edge weights w : E → R+. The cut function f : 2V → R+ defined as f(S) =

∑
e∈δG(S)w(e) is a

symmetric submodular function; it is not monotone unless the graph is trivial. If G is directed and
we define f as f(S) =

∑
e∈δ+G(S)w(e) then f is submodular but is not necessarily symmetric.

The following problem generalizes Max Cut and Max Directed Cut that we have already
seen.

Problem: Max Submod Func. Given a non-negative submodular set function f on a ground set
V via a value oracle1 find maxS⊆V f(S).

Note that if f is monotone then the problem is trivial since V is the optimum solution. Therefore,
the problem is interesting (and NP-Hard) only when f is not necessarily monotone. We consider a
simple local search algorithm for Max Submod Func and show that it gives a 1/3-approximation
and a 1/2-approximation when f is symmetric. This was shown in [2].

LocalSearch for Max Submod Func:
S ← ∅
repeat

If (∃v ∈ V \ S such that f(S + v) > f(S))
S ← S + v

Else If (∃v ∈ S such that f(S − v) > f(S))
S ← S − v

Else
S is a local optimum
return the better of S and V \ S

EndIf
Until (True)

We start the analysis of the algorithm with a basic lemma on submodularity.

Lemma 5 Let f : 2V → R+ be a submodular set function on V . Let A ⊂ B ⊆ V . Then

• If f(B) > f(A) then there is an element v ∈ B \ A such that f(A + v) − f(A) > 0. More
generally there is an element v ∈ B \A such that f(A+ v)− f(A) ≥ 1

|B\A|(f(B)− f(A)).

• If f(A) > f(B) then there is an element v ∈ B \ A such that f(B − v) − f(B) > 0. More
generally there is an element v ∈ B \A such that f(B − v)− f(B) ≥ 1

|B\A|(f(A)− f(B)).

We obtain the following corollary.

Corollary 6 Let S be a local optimum for the local search algorithm and let S∗ be an optimum
solution. Then f(S) ≥ f(S ∩ S∗) and f(S) ≥ f(S ∪ S∗).

Theorem 7 The local search algorithm is a 1/3-approximation and is a 1/2-approximation if f is
symmetric.

Proof: Let S be the local optimum and S∗ be a global optimum for the given instance. From the
previous corollary we have that f(S) ≥ f(S ∩ S∗) and f(S) ≥ f(S ∪ S∗). Note that the algorithm
outputs the better of S and V \ S. By submodularity, we have,

f(V \ S) + f(S ∪ S∗) ≥ f(S∗ \ S) + f(V) ≥ f(S∗ \ S)

1A value oracle for a set function f : 2V → R provides access to the function by giving the value f(A) when
presented with the set A.

where we used the non-negativity of f in the second inequality. Putting together the inequalities,

2f(S) + f(V \ S) = f(S) + f(S) + f(V \ S)
≥ f(S ∩ S∗) + f(S∗ \ S)
≥ f(S∗) + f(∅)
≥ f(S∗) = OPT.

Thus 2f(S) + f(V \ S) ≥ OPT and hence max{f(S), f(V \ S)} ≥ OPT/3.
If f is symmetric we argue as follows. Using Lemma 5 we claim that f(S) ≥ f(S∩S∗) as before

but also that f(S) ≥ f(S ∪ S̄∗) where Ā is shorthand notation for the the complement V \A. Since
f is symmetric f(S ∪ S̄∗) = f(V \ (S ∪ S̄∗)) = f(S̄ ∩ S∗) = f(S∗ \ S). Thus,

2f(S) ≥ f(S ∩ S∗) + f(S ∪ S̄∗)
≥ f(S ∩ S∗) + f(S∗ \ S)
≥ f(S∗) + f(∅)
≥ f(S∗) = OPT.

Therefore f(S) ≥ OPT/2. 2

The running time of the local search algorithm may not be polynomial but one can modify
the algorithm as we did for Max Cut to obtain a strongly polynomial time algorithm that gives
a (1/3 − o(1))-approximation ((1/2 − o(1) for symmetric). See [2] for more details. There has
been much work on submodular function maximization including work on variants with additional
constraints. Local search has been a powerful tool in these algorithms. See references for some of
these results and further pointers.

References

[1] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the multi-
linear relaxation and contention resolution schemes. Proc. of ACM STOC, 2001. To appear.

[2] U. Feige, V. Mirrokni and J. Vondrák. Maximizing a non-monotone submodular function.
Proc. of IEEE FOCS, 461–471, 2007.

[3] J. Lee, V. Mirrokni, V. Nagarajan and M. Sviridenko. Maximizing nonmonotone submodular
functions under matroid and knapsack constraints. SIAM J. on Disc. Math., 23(4): 2053–2078,
2010. Preliminary version in Proc. of ACM STOC, 323–332, 2009.

[4] S. Oveis Gharan and J. Vondrák. Submodular maximization by simulated annealing. Proc. of
ACM-SIAM SODA, 1098–1116, 2011.

	Local Search for Max Cut
	Local Search for Submodular Function Maximization

